Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 11(6): e0228123, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37855596

RESUMO

IMPORTANCE: Decreasing the camptothecin productivity by fungi with storage and subculturing is the challenge that halts their further implementation to be an industrial platform for camptothecin (CPT) production. The highest differentially abundant proteins were Pleckstrin homology (PH) domain-containing proteins and Peptidyl-prolyl cis/trans isomerase that fluctuated with the subculturing of A. terreus with a remarkable relation to CPT biosynthesis and restored with addition of F. elastica microbiome.


Assuntos
Domínios de Homologia à Plecstrina , Proteômica , Peptidilprolil Isomerase , Camptotecina
2.
BMC Microbiol ; 23(1): 9, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36627557

RESUMO

Cytosine deaminase (CDA) is a prodrug mediating enzyme converting 5-flurocytosine into 5-flurouracil with profound broad-range anticancer activity towards various cell lines. Availability, molecular stability, and catalytic efficiency are the main limiting factors halting the clinical applications of this enzyme on prodrug and gene therapies, thus, screening for CDA with unique biochemical and catalytic properties was the objective. Thermotolerant/ thermophilic fungi could be a distinctive repertoire for enzymes with affordable stability and catalytic efficiency. Among the recovered thermotolerant isolates, Aspergillus niger with optimal growth at 45 °C had the highest CDA productivity. The enzyme was purified, with purification 15.4 folds, molecular mass 48 kDa and 98 kDa, under denaturing and native PAGE, respectively. The purified CDA was covalently conjugated with dextran with the highest immobilization yield of 75%. The free and CDA-dextran conjugates have the same optimum pH 7.4, reaction temperature 37 °C, and pI 4.5, and similar response to the inhibitors and amino acids suicide analogues, ensuring the lack of effect of dextran conjugation on the CDA conformational structure. CDA-Dextran conjugates had more resistance to proteolysis in response to proteinase K and trypsin by 2.9 and 1.5 folds, respectively. CDA-Dextran conjugates displayed a dramatic structural and thermal stability than the free enzyme, authenticating the acquired structural and catalytic stability upon dextran conjugation. The thermal stability of CDA was increased by about 1.5 folds, upon dextran conjugation, as revealed from the half-life time (T1/2). The affinity of CDA-conjugates (Km 0.15 mM) and free CDA (Km 0.22 mM) to deaminate 5-fluorocytosine was increased by 1.5 folds. Upon dextran conjugation, the antiproliferative activity of the CDA towards the different cell lines "MDA-MB, HepG-2, and PC-3" was significantly increased by mediating the prodrug 5-FC. The CDA-dextran conjugates strongly reduce the tumor size and weight of the Ehrlich cells (EAC), dramatically increase the titers of Caspase-independent apoptotic markers PARP-1 and AIF, with no cellular cytotoxic activity, as revealed from the hematological and biochemical parameters.


Assuntos
Citosina Desaminase , Pró-Fármacos , Humanos , Aspergillus niger , Citosina Desaminase/metabolismo , Dextranos/metabolismo , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Cinética , Peptídeo Hidrolases/metabolismo , Pró-Fármacos/farmacologia , Proteólise , Linhagem Celular Tumoral
3.
Molecules ; 24(15)2019 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-31362455

RESUMO

l-Ornithine decarboxylase (ODC) is the rate-limiting enzyme of de novo polyamine synthesis in humans and fungi. Elevated levels of polyamine by over-induction of ODC activity in response to tumor-promoting factors has been frequently reported. Since ODC from fungi and human have the same molecular properties and regulatory mechanisms, thus, fungal ODC has been used as model enzyme in the preliminary studies. Thus, the aim of this work was to purify ODC from fungi, and assess its kinetics of inhibition towards various compounds. Forty fungal isolates were screened for ODC production, twenty fungal isolates have the higher potency to grow on L-ornithine as sole nitrogen source. Aspergillus terreus was the most potent ODC producer (2.1 µmol/mg/min), followed by Penicillium crustosum and Fusarium fujikuori. These isolates were molecularly identified based on their ITS sequences, which have been deposited in the NCBI database under accession numbers MH156195, MH155304 and MH152411, respectively. ODC was purified and characterized from A. terreus using SDS-PAGE, showing a whole molecule mass of ~110 kDa and a 50 kDa subunit structure revealing its homodimeric identity. The enzyme had a maximum activity at 37 °C, pH 7.4-7.8 and thermal stability for 20 h at 37 °C, and 90 days storage stability at 4 °C. A. terreus ODC had a maximum affinity (Km) for l-ornithine, l-lysine and l-arginine (0.95, 1.34 and 1.4 mM) and catalytic efficiency (kcat/Km) (4.6, 2.83, 2.46 × 10-5 mM-1·s-1). The enzyme activity was strongly inhibited by DFMO (0.02 µg/mL), curcumin (IC50 0.04 µg/mL), propargylglycine (20.9 µg/mL) and hydroxylamine (32.9 µg/mL). These results emphasize the strong inhibitory effect of curcumin on ODC activity and subsequent polyamine synthesis. Further molecular dynamic studies to elucidate the mechanistics of ODC inhibition by curcumin are ongoing.


Assuntos
Aspergillus/enzimologia , Inibidores da Ornitina Descarboxilase/química , Ornitina Descarboxilase/química , Aspergillus/classificação , Ativação Enzimática/efeitos dos fármacos , Cinética , Peso Molecular , Ornitina Descarboxilase/isolamento & purificação , Ornitina Descarboxilase/metabolismo , Inibidores da Ornitina Descarboxilase/farmacologia , Relação Estrutura-Atividade , Especificidade por Substrato
4.
Arch Pharm Res ; 2014 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-25322968

RESUMO

L-Arginase, hydrolyzing L-arginine to L-ornithine and urea, is a powerful anticancer, L-arginine-depleting agent, against argininosuccinate synthase expressing tumors. Otherwise, the higher antigenicity and lower thermal stability of this enzyme was the main biochemical hurdles. Since, the intrinsic thermal stability of enzymes follow the physiological temperature of their producer, thus, characterization of L-arginase from thermotolerant Penicillium chrysogenum was the objective of this study. L-Arginase (Arg) was purified to its homogeneity from P. chrysogenum by 10.1-fold, with 37.0 kDa under denaturing PAGE, optimum reaction at 50 °C, pH stability (6.8-7.9), with highest molar ratio of constitutional arginine, glutamic acid, lysine and aspartic acid. The purified enzyme was PEGylated and immobilized on chitosan, with 41.9 and 22.1 % yield of immobilization. At 40 °C, the T1/2 value of free-Arg, PEG-Arg and Chit-Arg was 10.4, 15.6, 20.5 h, respectively. The free-Arg and Chit-Arg have a higher affinity to L-arginine (K m 4.8 mM), while, PEG-Arg affinity was decreased by about 3 fold (K m 15.2 mM). The inhibitory constants to the free and PEG-Arg were relatively similar towards HA and PPG. The IC50 for the free enzyme against HEPG-2 and A549 tumor cells was 0.136 and 0.165 U/ml, comparing to 0.232 and 0.496 U/ml for PEG-Arg, respectively. The in vivo T1/2 to the free Arg and PEG-Arg was 16.4 and 20.4 h, respectively as holo-enzyme. The residual L-arginine level upon using free Arg was 156.9 and 144.5 µM, after 6 and 8 h, respectively, regarding to initials at 253.6 µM, while for Peg-Arg the level of L-arginine was nil till 7 h of initial dosing. The titer of IgG was induced by 10-15 % in response to free-Arg after 28 days comparing to IgG titer for PEG-Arg.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...